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ABSTRACT

As part of the National Aero-Space Plane (NASP) project, the multi-dimensional

effects of gravitational force, initial tank pressure, initial ullage temperature, and

heat transfer rate on the two-dimensional temperature profiles were studied. FLOW-

3D, a commercial finite-difference fluid flow model, was used for the evaluation. These

effects were examined on the basis of previous liquid hydrogen experimental data with

gaseous hydrogen pressurant. FLOW-3D results were compared against _tn existing

one-dimensional model. In addition, the effects of mesh size and convergence criteria

on the analytical results were investigated. Suggestions for future modifications and

uses of FLOW-3D for modeling a NASP tank are also presented.

INTRODUCTION

The temperature distribution in the ullage gas of a tank filled with liquid hydrogen

has been of interest for design in both ground and space-based propellant storage sys-

tems. The ullage gas temperature distribution is significant in determining the energy

distributions and pressurant gas requirements during the ramp pressurization process

as well as during the pressurized expulsion of the tank 1-4 Previous experimental and

analytical studies on tank pressurization and expulsion have produced results which

show the effects of various parameters on the temperature distributions and pressur-

ant gas quantities required during these processes 5-1°. However, these studies were

generally constrained to one-dimensional modeling, and the gravitational forces were

limited to those found at ground-level. Current work on the National Aero-Space

Plane (NASP) includes the study of fuel tanks which will operate at various gravita-

tional levels with the potential for multi-dimensional thermodynamic effects. As part

of the NASP project, slush hydrogen, a mixture of solid and liquid hydrogen, is also

being studied 11'12. Because of the existence of solid particles in the fuel, the use of

slush hydrogen may produce thermodynamic effects on both the ullage gas and the

propellant not seen using liquid hydroge n propellant. Therefore, a study was initiated



to determine the multi-dimensionaleffectson the temperature profiles in the ullage

gas during the ramp pressurization and expulsion phases on the operation of a NASP

vehicle tank.

The FLOW-3D computer code was chosen for modeling the multi-dimensional

temperature profiles which occur during tank pressurization. FLOW-3D is a gen-

eral three-dimensional fluid flow program developed by Flow Science, Inc. 13'14. The

code uses a finite-difference solution of the Navier-Stokes equations based on the

Marker-and-Cell (MAC) technique and the Implicit-Continuous Fluid-Eulerian (ICE)

technique 15'1s. These techniques were developed through a series of codes with the

generic name SOLA. SOLA-VOF, the most successful of these codes, serves as the ba-

sis for FLOW-3D; details of SOLA-VOF can be found in reference 17. Capabilities of

FLOW-3D include incompressible or fully compressible flow, rotating and accelerating

reference frames, and turbulent transport modeling. FLOW-3D has been used exten-

sively to model tank systems, especially systems in which sloshing is involved ls-2°.

FLOW-3D CODE SIMULATIONS

The 1988 version of FLOW-3D was used in the present study to determine the

temperature profiles during the pressurization phase of operation of a tank. In the

pressurization process the tank pressure is gradually increased by the addition of a

gas through a diffuser. There is no liquid outflow during pressurization. In a previ-

ous experimental study;' a 5 foot diameter spherical tank filled with liquid hydrogen

propellant was pressurized from approximately 17.4 psia to 50 psia using gaseous

hydrogen. The tank geometry from this study serves as the basis for the FLOW-3D

modeling discussed here. As part of the NASP project, this 5 ft tank geometry will

also be used in tests to be performed at K-Site, NASA Lewis Research Center's slush

hydrogen test facility located at Plum Brook Station in Sandusky, Ohio 12.

A two-dimensional representation of the 5 foot tank was used in the FLOW-3D

simulations with ullage volume percentages of 55%, 28%, and 8.5%, as shown in Figure

1. The simulated ullage was actually a very thin slice taken from the center of the

tank; however, because the thickness of the slice was small (0.1 ft), the representation

was essentially two-dimensional. The ullage fractions used correspond to actual liquid

hydrogen test data discussed in reference 7. In this simulation, hydrogen gas enters the

ullage space through a hemispherical diffuser, modeled as a porous obstacle (an option

within FLOW-3D). The computational grid used for most cases was a rectangular 10

cell by 10 cell mesh. The wall of the tank cut through this mesh, and the cell size

remained constant throughout the mesh for all cases studied.
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The velocity of the entering gas used for these simulations was determined from

data in reference 7. This velocity was scaled to take the smaller simulated ullage

volume into account such that the pressure at the end of the pressurization phase

was near 50 psia, corresponding to the previous data. Inlet gas temperatures were

also modeled from the previous data: 307°R for the 55% ullage case, 284°R for

the 28% ullage, and 524°R for the 8.5% ullage. Pressurization times used in the

computations were obtained from previous test data, and for most cases the initial

pressure was 17.4 psia. With the exception of the case where the ramp pressurization

profiles were examined, the pressurization profile was assumed to be linear. For most

cases, the initial ullage gas temperature was assumed to be 250°R at the top of the

tank, decreasing linearly to 40°R near the liquid surface. Because instabilities in the

code surfaced when a compressible gas was used with the incompressible liquid, only

the compressible gas in the ullage was considered (this is known as an "impedance

mismatch," occurring when the difference in the densities of the liquid and the gas is

great). The liquid surface was assumed to be a rigid plane at a constant temperature.

Examples of the input files used are shown in the Appendix for 55%, 28%, and 8.5%

ullage cases. Table 1 shows significant input parameters required by FLOW-3D for

these simulations, as well as some significant outputs.

For the three ullage volume percents studied, the effects of the following param-

eters on the ullage temperature profiles at the end of pressurization were examined:

gravity level (G), initial tank pressure (Pi), initial ullage temperature (Ti), ramp

pressurization profile, and wall (Qwall) and liquid (Qliq) heat transfer rates. In the

heat transfer study, the centerline temperatures were also compared against results

obtained with SLURP, the NASA Lewis Research Center one-dimensional ramp pres-

surization code 4. In addition, results are presented showing effects of convergence

criteria (e) and mesh size on FLOW-3D results.

RESULTS

Gravity

Figures 2, 3, and 4 show the effect of variations in the gravitatiolml forces on

temperature contours for 55%, 28%, and 8.50/0 ullage fraction, respectively. The

highest and lowest contour temperatures in the mesh are indicated above each graph,

and correspond to H and L on the graphs. Ten contours are presented on each graph;

the distance between the contours represents a constant difference in temperature, as

defined by the high and low temperature. Each figure also includes the convergence

criteria and time step ("e" and "dr", respectively) used in the analysis. Each case

was run using an initial tank pressure of 17.4 psia and final pressure of 50 psia,



corresponding to the data in the literature. These cases were run assuming no heat

transfer to the wall or liquid. The liquid level is indicated by the bottom of the

frame. The graph in the upper left-hand corner of Figure 2, at 1-g (G=32.2 ft/sec_),

shows that the final temperature contours (temperatures at the end of pressurization)

are quite flat, with a temperature contour range of 376°R near the top of the tank

to 109°R near the gas/liquid interface. This indicates a temperature profile which

is only axially-dependent, with no radial dependence at 1-g. As the gravitational

forces are decreased the temperature profiles begin to show some radial dependence.

However, at 55% ullage fraction this dependence does not become significant until

the gravitational force is less than 0.1 g (3.22 ft/sec_). At 0-g the profiles are highly

dependent on radius. In addition, the profiles appear to be unsymmetric at 0-g.

The unsymmetric profiles may be due to instabilities in the code at low gravitational

levels; these instabilities will be discussed later in the report. Note that at 0-g the

assumption of a rigid plane at the liquid surface probably does not apply, and a more

rigorous analysis would be required in this region.

One possible measure of where gravitational forces become significant is the di-

mensionless Froude number, Fr, which is defined as

It 2

gL

where u is the gas velocity (ft/sec), g is the gravitational force (ft/sec2), and L is a

characteristic length (ft). The Froude number represents a comparison between the

inertial forces and the gravitational forces; the inertial forces do not become greater

than the gravitational forces until the Froude number is greater than 1. For the tank

geometry here, with a flow velocity of approximately 0.5 ft/sec and a characteristic

length corresponding to the mesh cell length (approximately 0.25 ft), Fr greater than

1 corresponds to a gravitational force less than 0.1-g. Therefore, the temperature

profiles are not expected to show a significant change in shape until the force due to

gravity is less than 0.1-g.

Figure 3 (28% ullage) shows a similar result to that obtained with a 55% ullage.

At 8.5% ullage, shown in Figure 4, the final temperature profiles become dependent

on radius at a higher gravitational level (between 0.1 and 0.5-g). In these runs the

high temperature contour is actual greater than the inlet gas temperature. This

result was obtained due to adiabatic compression in the tank. In addition, the 8.5%

ullage cases appear to exhibit larger differences in high and low temperature contours

than those of the 55% or 28% runs, and some unsymmetrical profiles appear at the

lower gravitational forces. Code instabilities related to the convergence criteria may

be the cause of the unsymmetrical profiles; a discussion of the convergence criteria
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will be presented later in the results. Because most applications will probably be at

acceleration levels greater than 0.l-g, the FLOW-3D results indicate that the data

taken on the ground should apply to the NASP vehicle.

Initial Pressure

In cases where normal boiling point (NBP) liquid hydrogen is the propellant the

initial pressure, prior to the ramp pressurization phase, is usually near atmospheric.

In the case of slush hydrogen, however, the initial pressure may be as low as 1.1

psia, the triple point pressure of hydrogen. Therefore, because slush hydrogen may

be used to fuel the NASP vehicle, the effect of initial pressure on temperature profile

was studied. Figure 5 shows a comparison of ullage temperature profiles at the end

of pressurization with a 55% ullage at l-g, with no heat transfer at the wall or liquid.

In the top figure, at an initial pressure of 17.4 psia, the final temperature profiles

show no radial dependence. At an initial pressure of 1.1 psia, however, the fluid is

well mixed (the temperature contours range from 339 to 313°R), and the temperature

shows a significant radial dependence at the end of pressurization. The mixing of the

ullage gas can be seen in Figure 6, where a comparison is made between the velocity

profiles at the two initial pressures (the numbers above the graphs show tile scale for

velocity vectors, in ft/sec). At an initial pressure of 17.4 psia the velocity of the gas

is small near the liquid surface. At 1.1 psia, however, the gas velocity is significant

near the gas/liquid interface. Hence, mixing appears to be enhanced at the lower

pressures. This enhanced mixing may be the result of a higher pressure drop across

the diffuser and hence higher driving force for the flow; however, more work is required

to characterize this phenomenon.

Similar results are seen when the ullage fraction is reduced. At 28% ullage and

17.4 psia initial pressure, the temperature is quite stratified, ranging from 373°R to

109°R, as shown in Figure 7. The final profiles at an initial pressure of 1.1 psia show

significant mixing and radial dependence, with a temperature contour range of 330 to

306°R. The difference in mixing at the two pressures can be seen in Figure 8, where

velocity profiles are compared. The gas appears to penetrate through the ullage to

the liquid surface at 1.1 psia, while at 17.4 psia the hydrogen pressurant remains near

the diffuser. Finally, Figure 9 shows the temperature comparisons at 8.5% ullage.

Here, as in the previous cases, the mixing is enhanced at the lower pressure, leading

to less stratification. The temperatures profiles at the low pressure in the 8.5% ullage

case do appear to be unsymmetric. The unsymmetric profiles may be due to some

computational instabilities not seen at the higher initial pressures. However, the

thermal stratification in the ullage appears to be a strong function of the initial tank

pressure, regardless of ullage fraction.



Initial Ullage Temperature

Figure 10 shows a comparison of results with two different initial temperature

distributions. The cases were run for a 55% ullage at 1-g with no heat transfer

considered in the analysis. The top graph shows the final temperature contours when

an initial temperature ranging from 250°R near the top of the tank to 40°R at the

liquid surface was chosen. The bottom graph shows the results when an initial ullage

temperature of 40°R was assumed. From the results it can be seen that, regardless

of initial temperature, the profiles produced show no radial dependence. However,

the axial distribution of temperature does vary. At an initial temperature of 40°R

throughout the tank the final distribution is such that near the top of the tank the

temperature is high, but the temperature throughout the rest of the tank is low.

In contrast, when a temperature range of 250°R to 40°R is chosen at the start of

pressurization, the final distribution is fairly linear, ranging from 376°R at the top to

109°R near the liquid surface. Therefore, it appears that the initial temperature can

have a significant effect on the axial temperature profile. This difference will have an

effect on the heat transfer at the liquid interface, as the driving force for heat transfer

will change with a change in temperature.

Ramp Profiles

Results were also obtained using FLOW-3D to examine the difference in temper-

ature profiles when different pressurization profiles were used. These cases were run

using a 55% ullage with no heat transfer to the wall or the liquid. For most cases con-

sidered here the pressure was increased at a linear rate, corresponding to a constant

inlet gas flow velocity. In an actual pressurization scenario the pressure will probably

increase slowly in the initial phase of pressurization, then rapidly increase to reach

the final pressure, as discussed in reference 7. Figure 11 shows the two profiles used

in the comparison. Ramp Profile 1 is a constant slope profile, with a constant gas

velocity. Ramp Profile 2 allows for a slow increase in the flow rate throughout the

pressurization time. Figure 12 shows the temperature contours produced using the

two profiles. From the figure the shape of the pressure history profile does not have a

large impact on the shape of the ullage temperature profile or the magnitude of the

resulting temperatures at the end of pressurization. Therefore, for the simple cases

shown here, it appears that it is the quantity of gas added, which is approximately

the same for both ramp profile cases, and not the rate at which the pressurant is

added, which affects the magnitude of the profiles. More effort in this area is re-

quired, however, as factors such as initial pressure, mass and heat transfer at the

gas/liquid interface, and heat transfer to the wall may impact the results.



Heat Transfer

For the previous cases examined it was assumed that no heat was transferred to

the wall or liquid from the gas. In reality, the thermal capacity of the wall as well as

the heat transfer to the liquid play key roles in the determination of the stratifica-

tion of the ullage gas. Therefore, the effect of heat transfer on temperature contours

(two-dimensional representations) and centerline temperatures (one-dimensional rep-

resentation) were investigated.

Heat transfer results are shown in Figure 13 for a tank with 55% ullage. In this

figure three cases are considered: no heat transfer (upper left graph), 40 ft-lb/sec

(185 BTU/hr) from the gas to the wall and to the liquid (upper right graph), and

80 ft-lb/sec (370 BTU/hr) to the wall and 40 ft-lb/sec to the liquid (bottom graph).

The heat transfer rates were chosen based on runs with SLURP, the NASA Lewis

Research Center code for calculating tank thermodynamic parameters during slush

hydrogen ramp pressurization. The output of SLURP provided heat transfer rates to

the wall and the liquid, and these rates were scaled to the FLOW-3D simulation runs

based on area.

The results of the heat transfer comparison, as shown in Figure 13, indicate that

the heat transfer does not significantly affect the shape of the temperature contours.

With heat transfer to the wall and the liquid included, however, the magnitude of

the final temperatures of the ullage does decrease by a small amount. The adiabatic

solution shows a temperature profile ranging from 376°R near the top of the tank

to 109°R near the liquid surface, while the range of temperature contours using 80

ft-lb/sec at the wall is from 370°R to 96°R. In addition, the heat transfer affected

the amount of pressurant gas added. Because the final pressure was constant in this

study, the amount of mass added had to be increased (velocity was increased) in the

cases with heat transfer to meet the 50 psia final pressure criterion.

For comparison of the effects of heat transfer rates at smaller ullage fractions,

additional runs were made. Figure 14 shows the results of the comparison for 3 cases:

no heat transfer to the wall or liquid (top graph), 40 ft-lb/sec (185 BTV/hr) from

the gas to the wall and to the liquid (center graph), and 40 ft-lb/sec to the wall, 60

ft-lb/sec (278 BTU/hr) to the liquid (bottom graph). These cases were run for an

8.5% ullage at l-g, with an initial pressure of 17.4 psi. The heat transfer rates were

chosen based on runs with SLURP, as discussed in the previous figure.

From the output in Figure 14 it can be seen that the heat transfer did not have a

significant effect on the shape of the profiles, just as in the case of the 55% ullage. In

the case where the heat transfer rate was 60 ft-lb/sec at the liquid surface (bottom
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figure) the profiles did show some radial dependence, but the degree of dependence

is not high. This radial dependence may be a result of some code instabilities, as

will be discussed in the following figures. As expected, as the heat transfer rate was

increased the temperature of the ullage gas decreased. Under adiabatic conditions

the temperature contours ranged from 627°R to 149°R (top figure). The temperature

is higher than the inlet gas temperature due to adiabatic compression. At 60 ft-lb/sec

to the liquid the ullage gas temperature ranged from 553°R to 108°R. Therefore, as

discussed in the previous section on initial temperature differences, the heat transfer

at the interface and axial ullage temperature profiles are related.

Figure 15 shows the comparison of centerline temperatures (the one-dimensional

solution) for FLOW-3D runs with and without heat transfer. These results are com-

pared against a similar run with SLURP. For these cases an ullage of 8.5% and an

initial pressure of 17.4 psi were used. From the figure it can be seen that the adia-

batic solution gave temperatures up to 150°R higher than the solution obtained by

SLURP. If, however, a heat transfer to the wall and liquid is chosen such that it is

similar to that calculated by SLURP, similar temperature distributions are calculated

by FLOW-3D.

It should be noted that the heat transfer rates to wall and to the liquid were input

to the FLOW-3D code for study of the tank pressurization problems presented here.

In these runs heat transfer to the wall could not be calculated as a mesh large enough

to be used to model a volume composed of both a thin wall region and a relatively

large ullage space would have been computationally prohibitive. In addition, the

"impedance mismatch" between a low density hydrogen gas and a relatively high

density liquid hydrogen propellant caused instabilities in the code. This prevented

analysis of the heat transfer to the liquid from the gas, and limited the ability to

analyze expulsion problems. Therefore, modifications to the basic FLOW-3D code, or

a different approach to the problem (such as using FLOW-3D's cylindrical coordinate

capability), may be required in order to accurately predict temperature profiles in

a NASP vehicle tank without prior experimental knowledge of the mass and heat

transfer.

Convergence Criteria

The following figures show the effect of convergence criteria on temperature con-

tour results obtained using FLOW-3D. The simulations were performed using a 55%

ullage and an initial pressure of 17.4 psi, with no heat transfer to the wall or the liquid.

The comparisons of various convergence criteria were examined both at 1-g and at

the analytical asymptote of 0-g. The convergence criterion, e (known as EPSI in the

FLOW-3D input), is used to determine the termination of iterations - the iteration



continuesuntil everycell in the computational meshconvergesto within this value of

e. In the 1988 version of FLOW-3D the time step, dt (DELT in the input), and the

convergence criterion are related because of stability limits on the code. Therefore,

as the convergence criterion is decreased the time step must also be decreased.

Figure 16 shows the effect of convergence criteria at 1-g. From the figure it can

be seen that for the various convergence criteria used, .02, .002, and 1 x 10 -s, there

is little difference in the results. The ullage temperature contours range from 376°R

at the top of the tank to l10-120°R near the gas/liquid interface. Although the

temperature profile near the midpoint of the ullage differs somewhat between the

cases considered, the convergence criteria does not seem to significantly affect the

temperature distribution results at 1-g. This result is confirmed by a comparison of

the centerline temperatures, as shown in Figure 17. Note however that in some cases,

such as those shown for the 8.5% ullage fraction, a loose convergence criteria (large

value of "e") may lead to code instabilities for the geometry chosen.

Figure 18 shows the effect of convergence criteria at 0-g. In this figure the re-

suits at a convergence criteria of lx10 -s is quite different from the results at e_-0.02.

From the figure it appears that the temperature contours are more symmetrical at

e=lxl0 -n compared to the result with e=0.02. The symmetrical temperature dis-

tribution is a result of an "even" distribution of the gas. The difference in velocity

profiles, as shown in Figure 19, indicates that the gas is evenly distributed when a

convergence criterion of lx10 -6 is chosen (lower graph). At larger values of "e" this

symmetrical distribution of the gas is not evident. A symmetrical temperature dis-

tribution is probably a realistic result for the geometry considered here; therefore, it

is recommended that a tight convergence criterion be used at low gravitational lev-

els (a much more computationally costly requirement) and that a loose convergence

criterion be used for most cases at 1-g.

Mesh Size

The following figures show the effect of mesh size on temperature contours. The

results shown were for 55% ullage at 1-g and zero-g with an initial pressure of 17.4

psi, pressure convergence criterion (e) of .02 psi, and a time step (dt) of .005 sec.

There was no heat transfer to the wall or liquid in these cases. Two mesh sizes were

considered: a 100 cell mesh (10xl0) and a 400 cell mesh (20x20). From the results

shown in Figure 20 the mesh size did not impact the shape or the magnitude of the

final temperature profiles to any large degree, although there was some difference

near the liquid surface. From results presented in the Figure 21, however, mesh size

appears to have a significant effect on temperature distribution at zero-g. In this

case the 10xl0 mesh may not be large enough to resolve the gas velocity profiles in



the tank. Therefore, if a low gravitational force is used a finer partitioning of the

tank volume should be used (at the cost of high CPU time). At ground conditions,

however, a smaller number of mesh cells appears adequate.

FUTURE FLOW-3D MODIFICATIONS

In order to use the FLOW-3D code for a complete analysis of the NASP vehicle

tank several modifications to the code should be implemented. The ability to model

the heat and mass transfer at the gas/liquid interface appears to be a critical capa-

bility in determining the gas requirements, the slush hydrogen solid losses, and the

degree of thermal stratification in the ullage z. The addition of this capability may

require modification of the code to include the ability to perform calculations during

expulsion, when the fluid dynamics of the liquid and the thermodynamics of the gas

are both important. In addition, because the NASP vehicle may use both helium

and hydrogen gas during the pressurization and expulsion phases, a two-component

ullage model should be added. Finally, an initial slush hydrogen fluid dynamics

model has been added to the FLOW-3D code TM. However, this model will require

improvements to fully model slush hydrogen dynamics, including an improved slush

melting/solidification capability, the ability to have a free surface (gas/liquid inter-

face) present when the slush model is used, and the capability of modeling slush

hydrogen with a gaseous pressurant (3 phases simultaneously).

CONCLUDING REMARKS

The FLOW-3D computer code was used to determine the effects of various param-

eters on the two-dimensional temperature profiles during ramp pressurization prior

to pressurized expulsion of a liquid hydrogen tank. These results apply to the NASP

vehicle tanks where multi-dimensional effects may be important. The results obtained

can be summarized as follows:

1. For 1-g and for an initial pressure near atmospheric, the ullage gas final tem-

peratures do not show a radial dependence. As the gravitational forces are reduced,

the profiles do not show a significant radial dependence until the gravitational forces

are less than 0.1-g.

2. Initial tank pressure has a significant impact oll the temperature distribution.

At an initial pressure of 17.4 psi the final ullage temperature profile was not dependent
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on radius. At an initial pressure of 1.1 psi the final temperatures indicated that the

fluid was well-mixed, and the profiles appeared to be radially dependent.

3. The initial temperature affects only the magnitude of the final temperatures in

the ullage.

4. The shape of the ramp pressurization profile did not significantly impact the

final temperature profiles.

5. Convergence criteria and mesh size seem to make the largest difference in re-

sults at low gravitational levels. Tighter convergence criteria and smaller mesh sizes

are recommended at low gravitational levels to prevent the potential for computa-

tional instabilities.

6. Centerline temperatures using the SLURP one-dimensional pressurization code

and the FLOW-3D program matched when heat transfer rates obtained by SLURP

were scaled and used as input to the FLOW-3D simulations.

As the current effort was intended to be an initial investigation of FLOW-3D,

further analysis is required to determine the optimal approach in using the code

to analyze tank pressurization and expulsion problems. In addition, future efforts

should include the use of some of the unique capabilties of FLOW-3D, such as the

simulation of tank sloshing or the evaluation of the dynamics of the liquid hydrogen.

Although modifications are required to the code to simulate slush hydrogen tank

thermodynamics, FLOW-3D has been shown to be a versatile tool which may be

used for future studies of the NASP storage and feed system.
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APPENDIX: Sample Input Files For FLOW-3D

Example Input File for a 55% Ullage Case

K-SITE LH2: 55% Ullage, G=32.2,Pi=I7.4,Ti=250,

$XPUT

ITS=0, EPSI=0.02, IPDIS=O, DELT=O.005_ DTMAX=0.05,

SPRTDT=4.0, PRTDT=5.0, PLTDT=4.0,

WB=2, WT=6, WF=I, WBK=I, WL=I, WR=I,

TWFIN=24.0, GZ=-32.2,

IPUN=IO, IBTC=I, IFENRG=2,

AUTOT=0.O,

TIMBCT(1)=O.0,

TBCT(I,6)=307.0,

TBCT(I,5)=40.0,

TBCD=307.,

UBCT(I_6)=O.0,

PBCT(1,6)=3600.,

FBCT(I,6)=O.O_

POBCT(I,5)=-40.,

ICMPRS=I,

RF2=24690.96,

SEND

SMESH
PX(1)=-2.5,

SIZEX(2)=O.25,

NXCELL(1)=5,

PY(1)=0.O,

PZ(1)=-O.I87,

SEND

SOBS
NOBS=2,

CC(I)=6.25,

IOH(1)=I,

CC(2)=6.0,

OPOR(2)=0.7,

TOBS(1)=0.O,

TIMBCT(2)=0.2,

TBCT(2,6)=307.0,

TBCT(2,5)=40.0,

WBCT(2,6)=-0.60,

PBCT(2,6)=3600.,

FBCT(2,6)=0.O,

POBCT(2,5)=-40.,

IADIX=I,

CV2=53335.0,

PX(2)=O.O, PX(3)=2.5,

NXCELL(2)=5, NXCELT=I0,

PY(2)=0.10, NYCELT=I,

PZ(2)=2.5, NZCELT=IO,

CX2(1)=-I.O, CZ2(1)=-I.O,

RAL(1)=0.5,

CX2(2)=I.0, CZ2(2)=I.0,

IOH(2)=I,

TOBS(2)=I00.O,

POBS(I,I)=-40.,POBS(2,1)=-40.,

SEND

SFL

PRESI=2500.0,

SEND

SBF

SEND

$TEMP

NTMP=I, ITDIS(1)=I,

TCC(I)=-52.82, TCZ=I21.1,

SEND

$MOTN

SEND

$GRAFIC

NVPLTS=I, JVI(1)=2,

NCPLTS=I, KONTYP(1)=5,

SEND

SPARTS

SEND

TZH(1)=2.5,

JV2(1)=2,

JCl(1)=2,

TIMBCT(3)=IO0.O,

TBCT(3,6)=307.0,

TBCT(3,5)=40.O,

WBCT(3,6)=-0.60,

PBCT(3,6)=3600.0,

FBCT(3,6)=O.O,

POBCT(3,5)=-40.,

IADIZ=I,

CZ(2)=-5.0,

TZL(1)=0.75,

JC2(I)=2,

Runs

]4



Example Input File for a 28% Ullage Case

K-SITE LH2: 28% Ullage, G=32.2,Pi=I7.4,Ti=250,

SXFUT
ITB=O, EPSI=O.O07, IPDIS=0, DELT=0.O05, DTMAX=0.5,

SPRTDT=4.0, PRTDT=5.0, PLTDT=4.0,

WB=2, WT=6, WF=I, WBK=I, WL=I, WR=I,

TWFIN=24.0, GZ=-32.2,

IPUN=IO, IHTC=I, IFENRG=2,

AUTOT=O.O,

TIMBCT(1)=O.O, TIMBCT(2)=0.2,

TBCT(I,6)=284.0, TBCT(2,6)=284.0,

TBCT(I,5)=40.0, TBCT(2,5)=40.0,

TBCD=307.,

WBCT(I,6)=0.0,

PBCT(I,6)=3600.,

FBCT(I,6)=O.O,

ICMPRS=I,

RF2=24690.96,

SEND

SMESH
PX(1)=-2.5, FX(2)=0.0, PX(3)=2.5,

TIMBCT(3)=I00.O,

TBCT(3,6)=284.0,

TBCT(3,5)=40.O,

WBCT(2,6)=-0.323,WBCT(3,6)=-0.323,

PBCT(2,6)=3600., PBCT(3,6)=3600.O,

FBCT(2,6)=O.O, FBCT(3,6)=O.0,

IADIX=I, IADIZ=I,

CV2=51732.0,

SIZEX(2)=0.25,

NXCELL(1)=5, NXCELL(2)=5, NXCELT=IO,

PY(1)=O.0, PY(2)=0.10, NYCELT=I,

PZ(1)=0.75, PZ(2)=2.5, NZCELT=I0,

CZ2(1)=-I.0,

CZ2(2)=i.0,

TZH(1)=2.5,

JV2(1)=2,

SEND

SOBS

NOBS=2,

CC(I)=6.25, CX2(1)=-l.O,

IOH(1)=I,

RAL(1)=0.5,

CC(2)=6.0, CX2(2)=I.0,

OPOR(2)=0.7, IOH(2)=I,

TOBS(1)=O.O, TOBS(2)=IO0.O,

SEND

$FL

PRESI=2500.O,

SEND

SBF

SEND

$TEMP

NTMP=I, ITDIS(1)=I,

TCC(I)=-52.82, TCZ=I21.1,

SEND

$MOTN

SEND

$GRAFIC

NVPLTS=I, JVI(1)=2,

NCPLTS=I, KONTYP(1)=5,

JCI(1)=2, JC2(I)=2,

SEND

SPARTS

SEND

CZ(2)=-5.0,

TZL(1)=0.75,
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Example Input File for an 8.5% Ullage Case

K-SITE LB2: 8.5% Ullage, G=O.O,Pi=I7.4,Ti=250,

SXFUT
ITB-O, EPSI=O.05, IPDIS=O, DELT=O.O03, DTMAX=O.05,

SPRTDT=4.0, PRTDT=5.0, PLTDT=4.0,

WB=2, WT=6, WF=I, WBK=I, WL=I, WR=I,

TWFIN=I5.0, GZ=0.0,

IPUN=I0, IHTC=I, IFENRG=2,

AUTOT=O.O,

TIMBCT(1)=O.O,

TBCT(I,6)=524.0,

TBCT(I,5)=40.0,

TBCD=307.,

WBCT(I,6)=O.0,

PBCT(I,6)=3600.,

FBCT(I,6)=0.0,

ICMPRS=I,

RF2=24690.96,

SEND
SMESH
PX(1)=-I.8, PX(2)=O.O, PX(3)=I.8,

SIZEX(2)=0.25,

NXCELL(1)=5, NXCELL(2)=5, NXCELT=I0,

PY(1)=O.O, PY(2)=O.IO, NYCELT=I,

PZ(1)=I.60, PZ(2)=2.5, NZCELT=I0,

SEND

SOBS

NOBS=2,
CC(I)=6.25, CX2(1)=-I.0, CZ2(1)=-I.0,

IOH(1)=I,

RAL(1)=0.5,

CC(2)=6.0, CX2(2)=1.0, CZ2(2)=I.0,

OPOR(2)=0.7, IOH(2)=I,
TOBS(1)=O.O, TOBS(2)=IO0.O,

SEND

SFL

PRESI=2500.0,

SEND

SBF

SEND

$TEMP

NTMP=I, ITDIS(1)=I,

TCC(I)=-338.0, TCZ=235.0,

SEND

SMOTN
SEND

$GRAFIC

NVPLTS=I, JVI(1)=2,

NCPLTS=I, KONTYP(1)=5,

JCI(1)=2, JC2(I)=2,

SEND

$PARTS

SEND

TIMBCT(2)=0.2, TIMBCT(3)=IO0.O,

TBCT(2,6)=524.0, TBCT(3,6)=524.0,

TBCT(2,5)=40.O, TBCT(3,5)=40.O,

WBCT(2,6)=-O.197,WBCT(3,6)=-O.197,

PBCT(2,6)=3600., PBCT(3,6)=3600.O,

FBCT(2,6)=O.O, FBCT(3,6)=0.O,

IADIX=I, IADIZ=I,

CV2=63833.0,

CZ(2)=-5.0,

TZH(1)=2.5, TZL(1)=I.60,

JV2(I)=2,
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Table 1: Major Input and Output Parameters

for FLOW-3D Tank Pressurization Runs

Inputs

Time Step

Convergence Criteria
Gravitational Level

Initial Ullage Temperature

Initial Pressure

Heat Transfer to Liquid

Heat Transfer to Wall

Inlet Gas Velocity

Inlet Gas Temperature

Gas Specific Heat

Mesh Definition

Obstacle Definition

Outputs

Cell Temperature

Cell Pressure

Cell Gas Velocity

Average Ullage Pressure

Fluid Density

Dynamic Viscosity
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j Diffuser

Hydrogen Ullage Gas

_Llquid Sudace

5 fl Diameler Spherical Tank

FIGURE 1. - FLOtC-3D RODEL OF K-SITE TANK PRESSUR-

IZATION.

Low (!o_tour _109.3 R

High (.;ontour=376.4 R (_ = 32.2 ft./see 2

\,
/

Liquid Level

Low ContotLr=107,4 R

tligh Contottr=375.4 R G = 0.322 ft/sec 2

Low Contottr=107.9 R

High Contottr=376.l R G -- 3.22 ft/sec 2

i

Low Contous=103.3 R

High Contour=374.6 R G = 0.0 ft/sec 2

f/z-- - _

i. " V : -'_\

FIGURE 2. - EFFECT OF GRAVITY ON TERPERATURECONTOURS,55 PERCENTULLAGE, Pi = 17.q PSI, e = .02,
dt = O.OOS s£c, 2q sEc PRESSURIZATION.
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Low (lontot_r = 108.8 II l,ow Cold our _. 108._ II

Iligh Coidu,lr_373.4 l| G = 32.2 ft/sec 2 Iligh (.'.o.tour: :_705 It G r-- 3.22 I't/st'.c 2

I,ow Contour _108.7 It

lligh Co.tmtr=3?O 4 R G ---- 0.322 ft/sec z

S

LOW I.luntuiir !Jg.31k II

Iligh Conto,]r_ 372.11 II G = 0.0 ft/sec z

FIGURE 3. - EFFECT OF GRAVITY ON TEMPERATURE CONTOURS, 28 PERCENT ULLAGE, Pi : IZ.h PSi, e = .007,

dt = .005 SEC, 24 SEC PRESSURIZATION.

Low Contottr=[49.l R

High Contouz=626.6 R
G = 32.2 _/sec 2

i Diffuser _.£.__

i // .... .

2
L

Low Contottr=145 4 R

High Contour=458.5 R G = 3.22 r.L_/'sec2

Lo_ Contottr=t84,.g R G = 0.322 ft/sec 2
High Contour=496.S R

Low Conto_=183.4 R

High Conto_=503.SR G = 0.0 _/sec 2

FIGURE q. - EFFECT OF GRAVITY ON TEMPERATURE CON-

TOURS, 8.5 PERCENT ULLAGE, Pi = 17.4 PSX, e = .05,

dI = .003 SEC, 15 SEC PRESSURIZATION.

Low Contour=109.3 R. Pi = 17.4 psia
High Contour=376.4 R

I / , ,1 .

i

i,:

Low Contoux=313.0 R P, = 1.] psia
High Contour=338.5 R

FIGURE 5. - EFFECT OF INITIAL PRESSURE ON

TEMPERATURE CONTOURS, 55 PERCENT ULLAGE,

G = 32.2 FT/SEC 2, e = .02, dt = .005 SEC,

24 SEC PRESSURIZATION.
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--392 ftsec P, = 17,4 psla

-- L,64 fti%ec
P, = 1.1 psla

:/

/

j "

\

FIGURE 6. - EFFECT OF INITIAL PRESSURE ON

VELOCITY PROFILE, 55 PERCENT ULLAGE, G =

32.2 FT/SEC2, e = .02, dt = .005 sEc,

24 SEC PRESSURIZATION.

Low Conco_r=108.8 R

High Con:our=373.4 R P. = 17.4 psia

, !
\ r

i

Lo_ Como'a.r=_.05.7 R

Hish Contottr=330.,I R P, = 1.1 psia

/

/"
",\\

FIGURE 7. - EFFECT OF INITIAL PRESSURE ON TEM-

PERATURE CONTOURS, 2B PERCENT ULLAGE, G =

32.2 FT/SEC2, e = .007, dt = .OOS SEC, 24 SEC

PRESSUR IZATION.

-- ..*'6_, ft ice
P_ = 17.4 psia

-- 118 ft,'_¢c
P< = 1.1 psia

,\

%

J

,/

• / • 1 F ' •\
,,\

! t • • "

r

FIGURE 8. - EFFECT OF INITIAL PRESSURE ON VELOC-

ITY PROFILE, 28 PERCENT ULLAGE, Pi = 17.4 PSl,

e = .007, d| : .005 SEC, 24 SEC PRESSURIZATION.

Low Conto_=149 t R P, = 17.4 psia
P_h Ce, n_o_=626 t, R

Low Conto_=491.4 R

_gh Conto_=534.3 R P_ = 1.1 psla

I "7 /

FIGURE 9. - EFFECT OF INITIAL PRESSURE ON TE_ERA-

TURE CONTOURS, 8.5 PERCENT ULLAGE, G = 32.2 FT/

SEC2, e = .05, dt = ._3 SEC, 15 SEC PRESSURIZA-

TION.
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T_ = 250 R at top of tank
Low Conto_=109.3 R

HighC'omo_r=3T6.4 R T: = 40 R at l_quld surface

Low Coalour=7g.09 R T_ _ 40 R

High Contour=340 8 R

_-----_--___ i

i

i[

( !

I

FIGURE I0. - EFFECT OF INITIAL TEMPERATURE

ON TEMPERATURE CONTOURS, 55 PERCENT ULL-

AGE, Pi = 17.4 PSl, G = 32.2 FT/SEC2,

e = .02, 2q SEC PRESSURIZATION.

(x

=

P
0.

°.,°'

_ Ramp Profile 1 :"

................
...... °,°,

,; A ,o

Time, sec

FIGURE 11. - RAMP PROFILES USED FOR TEf_)ERATURE PROFILE

COMPARISON, 55 PERCENT ULLAGE, Pi = 17'LI PSI, 2q SEC

PRESSURIZATION.

Low <3onlour= [093 R

High Conlo_r=376 4 R
Ramp Profile 1

Low Contoua'=L13.? R Ramp Profile ")
High Comour=ag3.9 R

/

FIGURE 12. - EFFECT OF RAMP RA[E ON TEMPERA-

TURE CONTOURS, 55 PERCENT ULLAGE, Pi : 17.4

PSI, G = 32.2 FT/SEC 2, e : .02, dt = .OOS

SEC, 2q SEC PRESSURIZATION.
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Qw_dt=41J ftdb/scq

I.,,w c..t...=]o2,,l II Qllq=.l() ILlb/scc
IlJgh Colto.rs'J71.O II

..... - ..........

\

I.o. Co,,L,,.r='_5.65 I Qwall:SU ft-lb/scg Qliq:.ll} ['t-ll,hcc
High CunlLu.r=369 5 El

FIflJRE 1_. - LFFEEI Of- ItEAT TRANSFER ON 1ENPERA[URE £ONIOtRS, 55 PEREEN1 ILtAGE, Pi - 1/A Psi,

G : 32.2 _t/sEc 2, e = .02, dt = .OOS sEc, 2q SEc PRESSIJRIZAIION.

Low Conlottr=149.1 R

High Contout=g2g.6 R Adiabatic Solution

Lo. Conto_=129.1 r Qwall=40 ft-lb/sec, Qliq=40 ft-lb/sec
High Contotur=60T.4 R

Lo* Co.to.r=100.4 r Qwa]l=40 ft-lb/sec, Qliq=60 ft-lb/sec

High Contour=553.5 R

FI6URE 14, - EFFECT OF HEAT TRANSFER ON TENPERATURE

CONTOURS, 8.5 PERCENT ULLAGE. Pi = 17.4 est, G =

32,2 FT/SEC 2, e = ,05, dt = .003 SEC, 15 SEC PRES-

SURIZATION.

el-

m

E

15 sec Pressurization

°oo

o

P.:'-'- I(_/in_lo fl.lb/ll, Olq:l$O ll-II)/s
0 SLURP Solullofl

[]

O_

0

DO 0

• 0
n •

0

OD

0

• []

Olstanca from Top of Tank, It

FIGURE 15. - CO_i:'ARISON OF CENTERLINE TE.RPERATURES

USING VARIOUS HEAT TRANSFER RATES, 8.5 PERCENT ULL-

A_, e = .o7, dl = .oos SEC, Pi = l/.q PSI.
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Low Contottr=109.3 R e=.02, dt=.O05 sec
High Contour=376.4 R

/¢ \,

Low Contour=]17,1 R

High Contour=376,2 R
e=.002, dt---.O005 se_:

\

\

Low Contour=L06.2 R

High Contour=376.3 R
e:lxlO -6, dt=,O001 sec

FIGURE IG. - EFFECT OF CONVERGENCE CRITERIA ON TEMPERATURE CONTOURS, 55 PERCENT ULLAGE,

Pi = 17.4 PSI. G = ]2.2 FT/SEC2, 24 SEC PRESSURIZATION.

E

0
o •

0

[]

0

0

o
[]

l O e=.02, dl=.O05e=.O02, dl=.O005
e=lX 10-6, dl=J]_01

e ffi pressure convergence crllerla

4:11 ffi tlme stop, sec

{3

@

Distance from Top of Tank, ft

FIGURE 17. - COMPARISONOF CENTERLINE TEMPERATURES
USING VARIOUS CONVERGENCE CRITERIA, 55 PERCENT

ULLAGE, G = 32.2 FT/SEC 2, Pi = 17.q PSl, 24 SEC
PRESSURIZATION.
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Low Uontour-S7.47 R

lligh Contour=334.5 H e:.02, dt:.O05 sec

Low Contour:93.60 R

High Contour=335,1 R e=.O02, dt---.O005 sec

Low Contour=g0.71 R

High Contour=334.0 R e_txlu-611 ._
dt=.O001 $e¢

FIGURE 18. - EFFECT OF CONVERGENCE CRITERIA ON TEMPERATURE CONTOURS, 55 PERCENT ULLAGE,

Pi = 17.4 PSl, G = 0.0 FT/SEC 2, 16 SEC PRESSURIZATION.

-- .405 O_/sec

e----.O02, dt---.O005 sec

I / / / I_ -, -_ \

I / / / I _ \ -_ ,,,

-- .439 _/_c
e=lxlO -6, dt----.O001 sec

/ I { I

l 1 \

I

\

FIGURE 19. - EFFECT OF CONVERGENCE CRITERIA ON VELOCITY PROFILE, 55 PERCENT ULLAGE, Pi = 17.4 PSi,

G = 0.0 FT/SEC2M 16 $EC PRESSURIZATION.
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Low Conto_r=lO0.3 R 100 cells (10 x 10 Mesh)
High Contour=376.4 R

"\\

Low Contour=ST.CS R 400 cells (20 x 20 Mesh)
High Contour=375.8 R

J/ _ •

FIGURE 20. - EFFECT Of I_SH SIZE ON TEMPERA-

TURE CONTOURS, 55 PERCENT ULLAGE, Pi =

17.4 SEC, G = 32.2 FT/SEC 2, 8 = .02, d| =

.005 SEC, 24 SEC PRESSURIZATION.

Low Contottr=103.3 R I00 cells (10 x I0 Mesh)
High Contottr=374,6 R

Low Contouz=79.98 R

High Conto_=3T5,1 R 400 cells (20 x 20 Mesh)

FIGURE 21. - EFFECT OF MESH SIZE ON TEMPERA-

TURE CONTOURS, 55 PERCENT ULLAGE, Pi = 17.4

PSI, G = 0.0 FT/SEC 2, 8 = .02, d| = ,005

SEC, 24 SEC PRESSURIZATION.
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